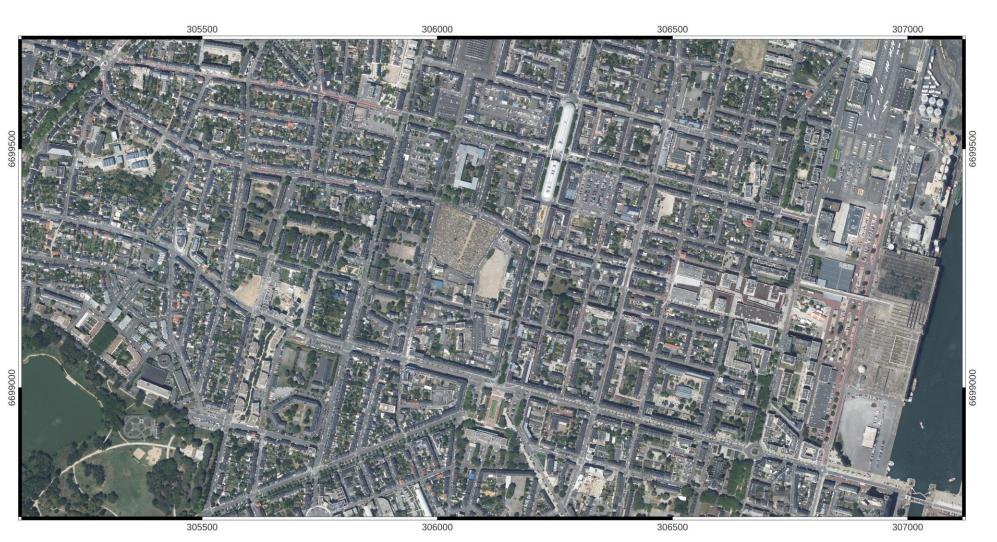


Égalité Fraternité

OCCUPATION DES SOLS PLÉIADES NEO

CoSIA – Couverture des Sols par Intelligence Artificielle



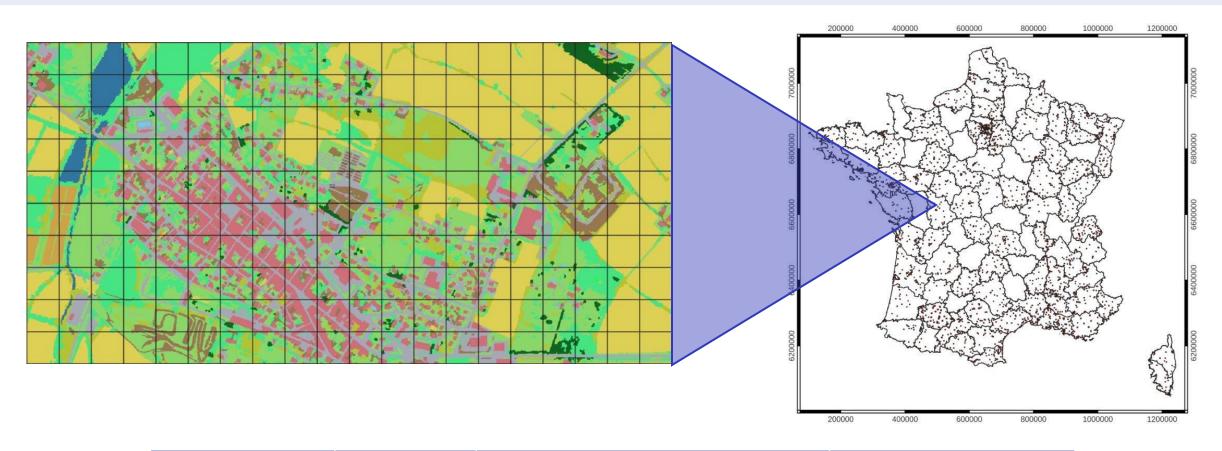
Nomenclature (15 classes)

- Bâtiment
- Zone imperméable
- Zone perméable
- Piscine
- Serre
- Sol nu
- Surface eau
- Neige
- Conifère
- Feuillu
- Broussaille
- Pelouse
- Culture
- Terre labourée
- Vigne
- Vigne

CoSIA – Couverture des Sols par Intelligence Artificielle

Saint-Nazaire

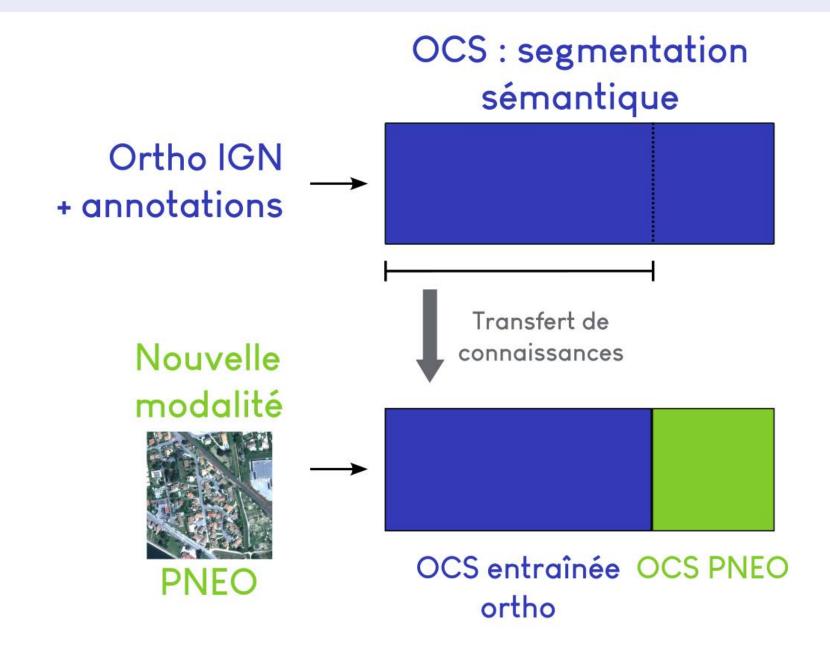
Annotations – Tâche de segmentation sémantique



Jeu de données	Superficie	Nombre de patchs 512x512 pixels	Nombre de domaines
FE_V1.2 (oct. 2023)	2 623 km²	250 150	75

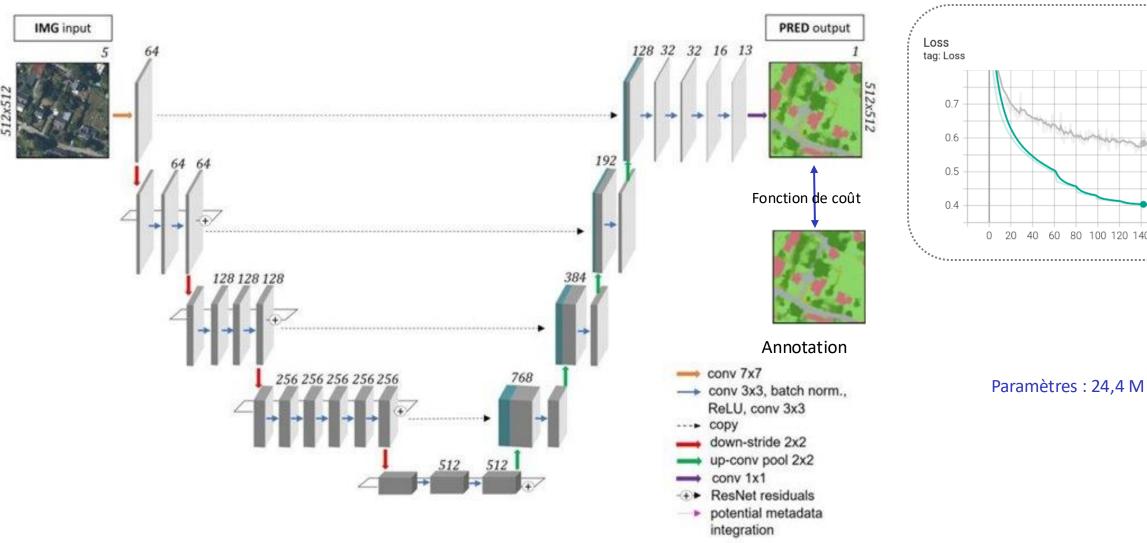
Modalité	OA	mloU	mFscore	mPrecision	mRappel
RVBI	75.37 %	57.50%	71.84 %	76.33 %	69.21%

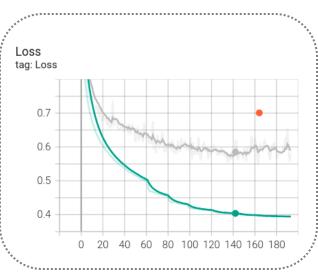
Transfert de connaissances – fine-tuning



Modèle de référence – entraîné sur la BD ORTHO

Référence: U-Net Resnet-34, dataset ortho FE v1.2 [baseline]





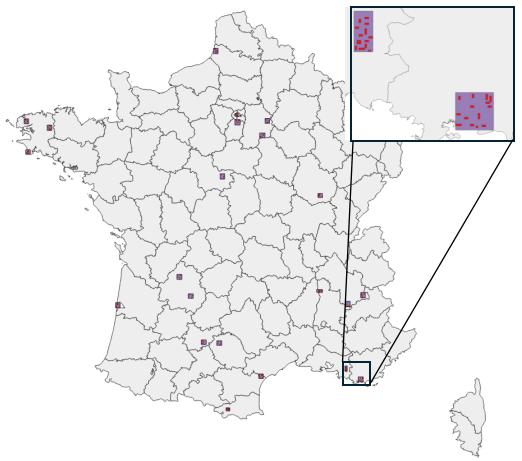
PNEO – Application modèle BD ORTHO

Imagerie ORTHO

Imagerie PNEO

Imagerie	Canaux	Radiométrie	Résolution spatiale	Encodage
ORTHO	4 : RVB (BD ORTHO) + I (BD ORTHO IRC)	Traîtements chaîne Ortho	20 cm	8 bits
PNEO	6 : RVBI + DeepBlue + RedEdge	Level 2A surface reflectance	30 cm	16 bits 8 bits

PNEO – Annotations



Jeu de données	Superficie	Nombre de patchs 512x512 pixels	Nombre de domaines
FE_V1.2 (oct. 2023)	2 623 km²	250 150	75
PNEO_V1.0	200 km²	8 448	23

Choix techniques

Référence : inférence directe du modèle source de la BD ORTHO [baseline]

Modèle IA BD ORTHO (RVBI) --> BD ORTHO

Modèle IA BD ORTHO (RVBI) --> PNEO

Architecture – U-Net avec encodeur Resnet-34

128 128 128

256 256 256 256 256

Référence : inférence directe du modèle source de la BD ORTHO [baseline]

Segmentation head

Input normalization

IMG input

Segmentation head

Loss tag: Los

128 32 32 16 13

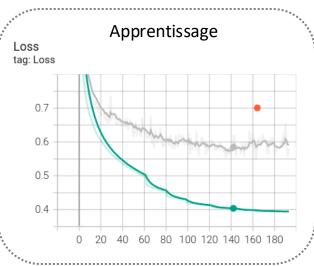
Fonction de coût

0.7

0.6

0.5

Embedding



Paramètres: 24,4 M

Annotation

- conv 7x7

--- copy

conv 3x3, batch norm., ReLU, conv 3x3

> down-stride 2x2 up-conv pool 2x2

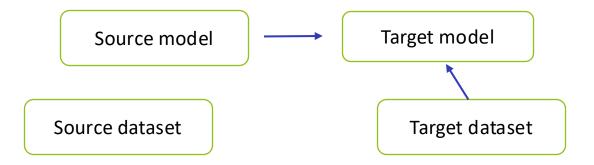
ResNet residuals potential metadata

conv 1x1

integration

Choix techniques – quelle normalisation?

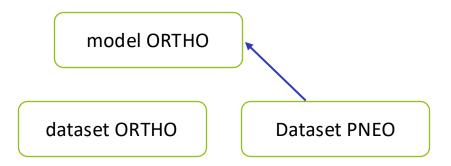
Référence : inférence directe du modèle source de la BD ORTHO [baseline]



Quelle normalisation des données PNEO ?

- Conversion en flottant [norma-01]
- Centrer-réduire :
 - Avec les stats du dataset source [norma-source]
 - Avec les stats du dataset cible [norma-target]

Référence : inférence directe du modèle source de la BD ORTHO [baseline]



Input normalization	mloU
norma-01	41.06 %
norma-source	40.01%
norma-target	46.38 % (*)
BD ORTHO	57.50 %

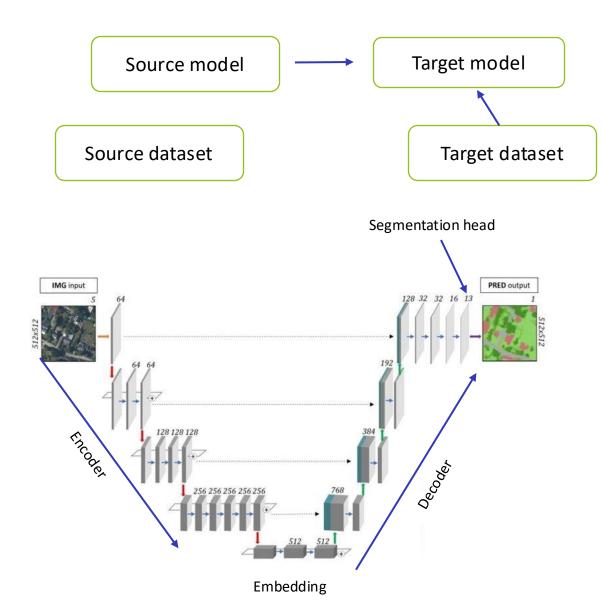
(*) Baseline pour la suite des expérimentations

Hypothèse: suffisamment d'images dans le dataset cible pour [norma-target]

Quelle normalisation des données PNEO ?

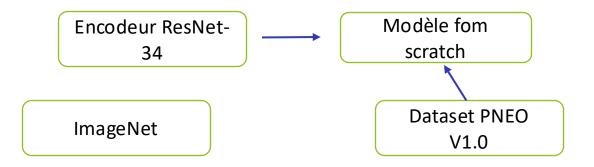
- Conversion en flottant [norma-01]
- Centrer-réduire :
 - Avec les stats du dataset source [norma-source]
 - Avec les stats du dataset cible [norma-target]

Choix techniques – quel fine-tuning?



Quel affinement (fine-tuning) du modèle ?

- Apprentissage modèle cible avec le dataset cible [app-scratch]
- Initialisation des paramètres avec le modèle source (modèle préentraîné) [ft-initialisation]
- Initialisation + geler des paramètres (freeze) :
 - Geler l'encodeur [fr-freeze-encoder]
 - Geler l'encodeur et le décodeur [fr-finetune-head]



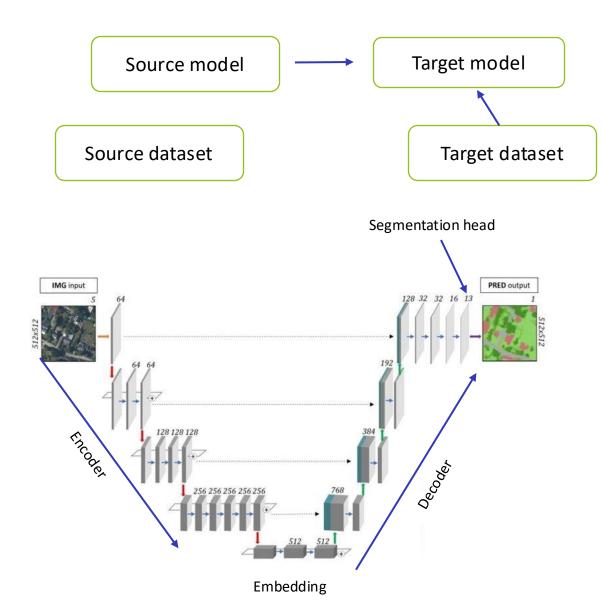
Quel affinement (fine-tuning) du modèle?

- Apprentissage du modèle cible avec le dataset cible PNEO (préentraînement ImageNet) [app-scratch]

Input normalization	Epoch	mloU
norma-target	44	49.64 % (+3.26 %)
baseline		46.38 %

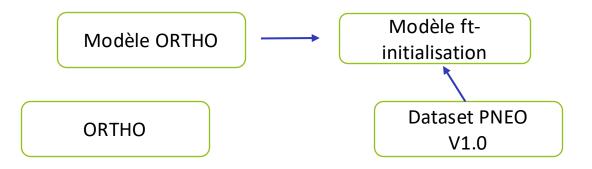
- Faibles gains
- Ne profite pas des connaissances apprises sur la tâche OCS

Choix techniques – quel fine-tuning?



Quel affinement (fine-tuning) du modèle ?

- Apprentissage modèle cible avec le dataset cible [app-scratch]
- Initialisation des paramètres avec le modèle source (modèle préentraîné) [ft-initialisation]
- Initialisation + geler des paramètres (freeze) :
 - Geler l'encodeur [fr-freeze-encoder]
 - Geler l'encodeur et le décodeur [fr-finetune-head]

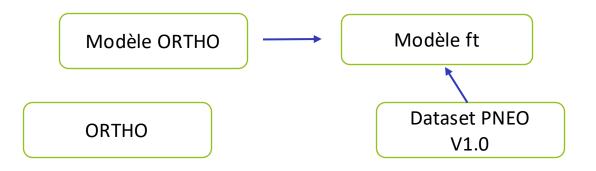


Quel affinement (fine-tuning) du modèle?

 Initialisation des paramètres avec le modèle source (modèle préentraîné) [ft-initialisation]

Input normalization	Epoch	mloU
norma-target	5	60.58 % (+14.20 %)
baseline		46.38 %

- Gains importants avec initialisation modèle source
- Modèles cibles appris en peu d'époques



Quel affinement (fine-tuning) du modèle?

- Initialisation + geler des paramètres (freeze) :
 - Geler l'encodeur [fr-freeze-encoder]
 - Geler l'encodeur et le décodeur [fr-finetune-head]

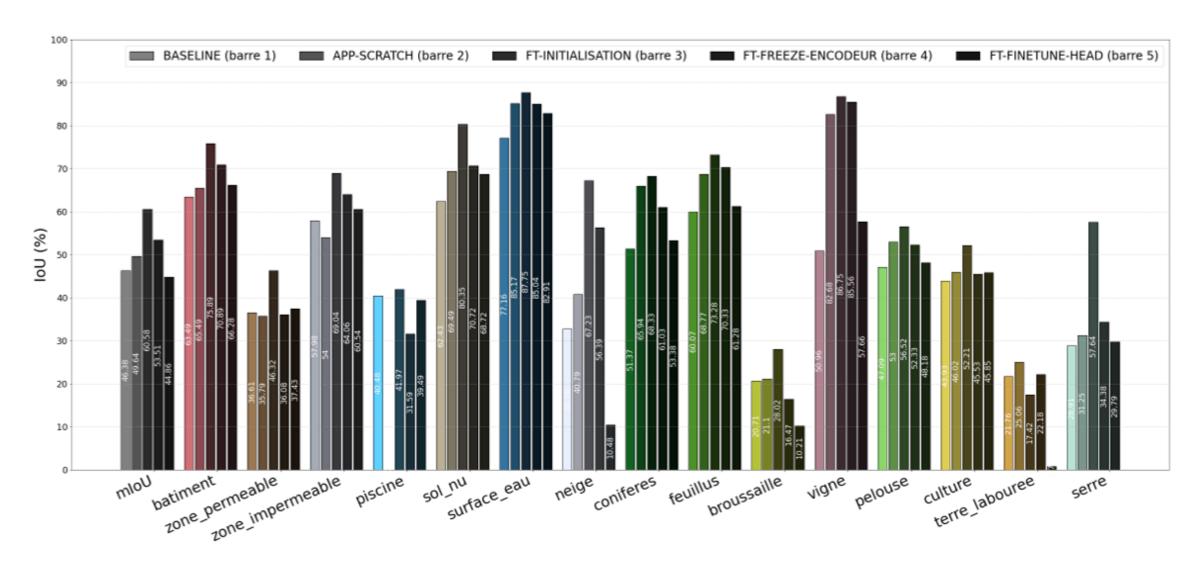
Input normalization	Fine-tuning	Epoch	mloU
norma-target	Ft-initialisation	5	60.58 % (+14.2 %)
norma-target	Ft-freeze-encoder	68	53.31% (+6.93%)
norma-target	Ft-finetuning-head	28	44.86 % (-1.42 %)
baseline			46.38 %

- Apport avec approche consistant à geler l'encodeur.
- Ré-estimer simplement la segmentation head pas efficace.
- [FT-finetune-head] < baseline : val loss vs. mIoU / classes rares.

[ft-freeze-encoder] [norma-target]

Choix techniques – quel fine-tuning?

[ft-initialisation]: meilleures performances pour toutes les classes



Conclusion

- Meilleure méthode : initialisation des poids avec le modèle ortho + ré-entraînement de tous les poids

Pour aller plus loin:

- Bonne capacité de généralisation sur les 23 segments PNEO -> regarder si c'est le cas sur pourcentage plus grand de la France
- Méthodologies :
 - o Regarder quels paramètres ont été mis à jour
 - O Diminuer jusque 50 km² d'annotations et regarder l'évolution des métriques OA et mIoU
 - Tester apprentissages mixtes : ortho + PNEO
 - o Canaux DeepBlue et RedEdge : comment les intéger à l'entrée de l'architecture

